# programmierung und datenbanken

Joern Ploennigs

Computerhardware

MIDJOURNEY: MAN COMPUTER, REF. FRITZ KALIN

## **A**BLAUF

# Motivation Computer und Architekturen Programmierung und Datentypen MODELLIERUNG Fehler und Debugging Objektorientierung u. Softwareentwurf Programmierung Verzweigungen und Schleifen MODELLIERUNG Funktionen und Rekursion

## DEFINITION: COMPUTER

Computer sind heutzutage allgegenwärtig und erfüllen in unserem Alltag viele Aufgaben. Sie sind formal definiert als



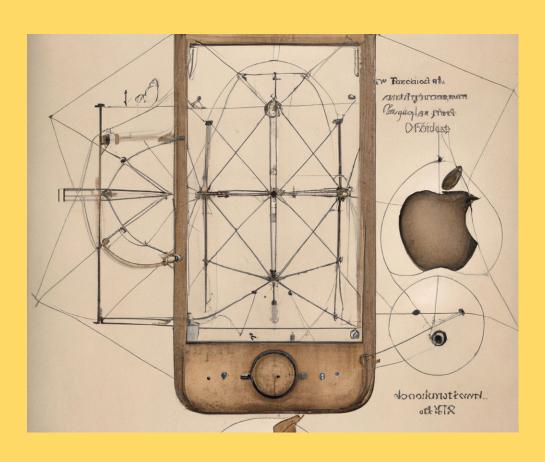
## **Definition:** Computer

Ein Computer ist ein Gerät, das mittels programmierbarer Rechenvorschriften Daten verarbeitet

# HÖRSAALFRAGE

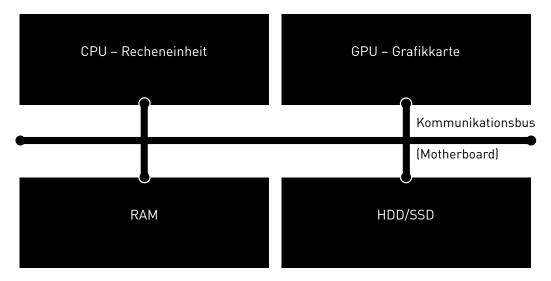
Welche Computer-Arten gibt es?




Midjourney: A Mona Lisa-style painting with a goat taking a photo with an iPad

#### Computerarten

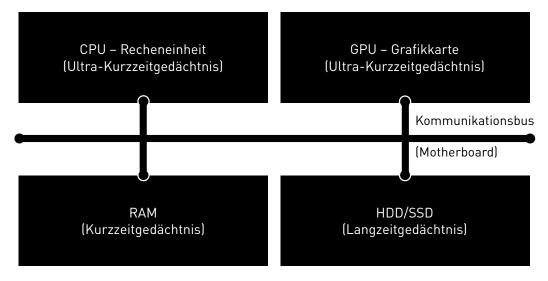
- Supercomputer Spezielle Computer mit sehr vielen CPUs und GPUs zur hochparallelen Verarbeitung komplexer Probleme (z.B. Wettersimulation)
- Mainframe Spezielle Großrechner mit sehr hoher Zuverlässigkeit z.B. in Banken
- Server Computer in Rechenzentren ohne Bildschirm für das Internet oder Cloud-Computing
- Personal Computer (PC) Desktop Computer in Büros oder daheim für Arbeit, Spielen, etc.
- Laptops Mobile Computer unterwegs fürs arbeiten, spielen, studieren
- Smartphones Mobiler Rechner mit Touchscreen und wenig Telefonfunktion
- Tablets Mobiler Computer mit viel Touchscreen und ohne Telefonfunktion
- Eingebettete Computer kleine Rechner in Autos, Robotern und Smart-Homes


## HÖRSAALFRAGE

Aus welcher Hardware besteht ein Computer?



DALL-E 2: Early designs of the iPhone by Leonardo da Vinci

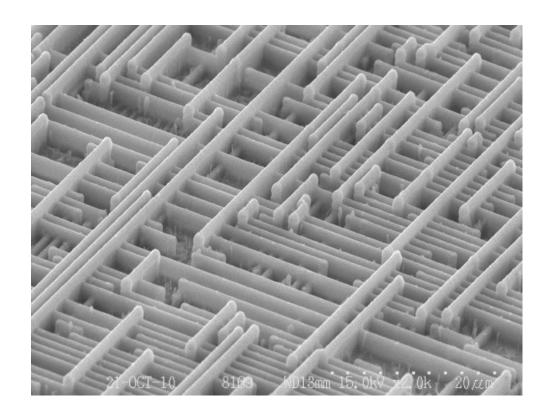

## COMPUTER AUFBAU



Die Kernmodule eines Computers sind:

- die CPU als zentrale Recheneinheit,
- die GPU für graphische Anwendungen,
- der RAM als Arbeitsspeicher und
- ein Harddrive (HDD) oder Solid State Drive (SSD)

#### COMPUTER AUFBAU SPEICHERDAUER




Der Computer hat ähnliche Gedächtnisarten wie der Mensch:

- CPU und GPU haben kleine Register und Cache Speicher (Ultra-Kurzzeitgedächtnis)
- Der RAM ist ein volatiler Speicher, d.h. der Inhalt geht beim ausschalten verloren (Kurzzeitgedächtnis)
- Die HDD/SSD ist ein permanenter Speicher, d.h. der Inhalt bleibt erhalten (Langzeitgedächtnis)

## CPU - CENTRAL PROCESSING UNIT

- Die CPU ist die Recheneinheit des Computers um Daten zu verarbeiten
- Sie bearbeitet eine Sequenz an Befehlen (Ein Programm)
- Eine CPU besteht aus Millionen an Transistoren die nur wenige Nanometer (1000000nm=1cm) groß sind
- Wenige Transistoren können nur eine einzelne logische Operation berechnen



https://www.ial-fa.com/blog/wafer-lot-acceptance-to-mil-std-883

## BINÄREN ZAHLEN

- Computer speichern, verarbeiten & kommunizieren Daten als binären Zahlen, weil Transistoren in einem Gatter nur logische Operationen ausführen können.
- binarius Zweifach, doppelt
- Das kleinste mögliche (nützliche) System von Zeichen
- Mögliche Repräsentationen von Binärcode:
  - · 0/1
  - Falsch / Wahr
  - Aus/An

## ACHTUNG: DER UNTERSCHIED IM COMPUTER

Aufgrund der binären Darstellung werden übliche Einheitenvorsätze wie Kilo-, Mega-, etc. auf Basis von 1024 und nicht auf Basis von 1000 definiert

| Einheit  | Abkürzung | <b>Dezimal Wert</b> | Binär (IEC) | Abkürzung | Binär (Bytes)      |
|----------|-----------|---------------------|-------------|-----------|--------------------|
| Kilobyte | kB        | 1.000               | Kibibyte    | KiB       | 1.024              |
| Megabyte | MB        | 1.000.000           | Mebibyte    | MiB       | 1.048.576          |
| Gigabyte | GB        | $1.000^3$           | Gibibyte    | GiB       | 1.024 <sup>3</sup> |
| Terabyte | TB        | 1.0004              | Tebibyte    | TiB       | 1.024 <sup>4</sup> |

# HÖRSAALFRAGE

# Wie Weit kann man mit 10 Fingern Zählen?



Midjourney: Counting with two hands

#### BINÄREN ZAHLEN - GANZE ZAHLEN

- Unsere dezimalen Zahlen lassen sich als Binärzahlen codieren
- Binärzahlen erlauben dieselben bekannten Grundrechenarten wie Dezimalzahlen also Addition, Subtraktion, Multiplikation und Division
- So kann der Computer mit dezimalen Zahlen rechnen
- Im Computer werden Zahlen auch oft hexagonal (Basis 16) codiert, da sich somit ein Byte (8 Bits) in 2 Zeichen beschreiben lassen

| Dezimal | Binär | Hexadezimal |
|---------|-------|-------------|
| 0       | 0000  | 0           |
| 1       | 0001  | 1           |
| 2       | 0010  | 2           |
| 3       | 0011  | 3           |
| 4       | 0100  | 4           |
| 5       | 0101  | 5           |
| 6       | 0110  | 6           |
| 7       | 0111  | 7           |
| 8       | 1000  | 8           |
| 9       | 1001  | 9           |
| 10      | 1010  | A           |
| 11      | 1011  | В           |
| 12      | 1100  | С           |
| 13      | 1101  | D           |
| 14      | 1110  | E           |
| 15      | 1111  | F           |

BINÄREN ZAHLEN – GLEITKOMMAZAHL



PROGRAMMIERUNG UND DATENBANKEN

- Reelle Zahlen können im Computer nicht exakt dargestellt werden, da sie unendlich viele Nachkommastellen haben können (z. B.  $1/3,\pi$ )
- Computer verwenden daher näherungsweise Gleitkommazahlen (floating point) in Exponentialschreibweise:  $\pm m \times 2^e$
- Zerlegung: Vorzeichenbit, Exponent (mit Bias), Mantisse (Binär)

Achtung: Begrenzte Anzahl an Stellen → Rundungsfehler!

**Beispiel:** Wir möchten die Zahl -13,25 als Gleitkommazahl im Format  $\pm m \times 2^e$  darstellen:

- 1. Vorzeichen: Die Zahl ist negativ, also 1.
- 2. Dezimalzahl in Binärform:

$$13,25_{10} = 1101,01_2$$

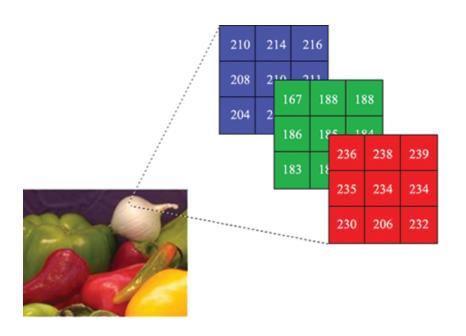
3. Exponentialverschiebung:

$$1101,01_2=1,10101_2\times 2^3$$

- 4. Zerlegung in Mantisse: 1, 10101<sub>2</sub> und Exponent: 3
- 5. Ergebnis:  $-13,25=-1,10101_2 imes 2^3$

Im IEEE 754 Standard werden die Bits zusätzlich aufgefüllt, so dass sie in die 32 oder 64 Bit passen.

- Vorzeichenbit: 1 (negativ)
- ullet Exponent mit Bias:  $3+127=130_{10}~(10000010_2)$
- Die Binärdarstellung im Speicher lautet also:
  - 1 10000010


## ABBILDUNG VON ZEICHEN IM COMPUTER

- Buchstaben in Texten werden im Computer binär codiert
- ASCII: Textzeichen gespeichert in 8 Binärwerten (8 Bit = 1 Byte)
- Binäre Codierung zieht sich vom niedrigsten Hardwarelevel bis hoch zur alltäglichen Anwendung

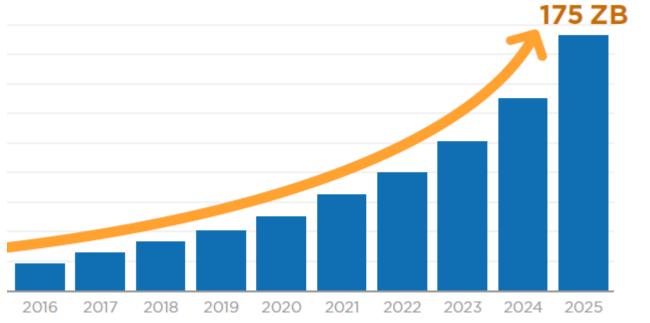
| Char | Dezimal | Binär    | Char | Dezimal | Binär    | Char  | Dezimal | Binär    |
|------|---------|----------|------|---------|----------|-------|---------|----------|
| а    | 97      | 01100001 | А    | 65      | 01000001 | 0     | 48      | 00110000 |
| b    | 98      | 01100010 | В    | 66      | 01000010 | 1     | 49      | 00110001 |
| С    | 99      | 01100011 | С    | 67      | 01000011 | 2     | 50      | 00110010 |
| d    | 100     | 01100100 | D    | 68      | 01000100 | 3     | 51      | 00110011 |
| е    | 101     | 01100101 | Е    | 69      | 01000101 | 4     | 52      | 00110100 |
| f    | 102     | 01100110 | F    | 70      | 01000110 | 5     | 53      | 00110101 |
| g    | 103     | 01100111 | G    | 71      | 01000111 | 6     | 54      | 00110110 |
| h    | 104     | 01101000 | Н    | 72      | 01001000 | 7     | 55      | 00110111 |
| į    | 105     | 01101001 | Ι    | 73      | 01001001 | 8     | 56      | 00111000 |
| j    | 106     | 01101010 | J    | 74      | 01001010 | 9     | 57      | 00111001 |
| k    | 107     | 01101011 | K    | 75      | 01001011 | !     | 33      | 00100001 |
| l    | 108     | 01101100 | L    | 76      | 01001100 | ?     | 63      | 00111111 |
| m    | 109     | 01101101 | M    | 77      | 01001101 |       | 46      | 00101110 |
| Π    | 110     | 01101110 | Ν    | 78      | 01001110 | ,     | 44      | 00101100 |
| 0    | 111     | 01101111 | 0    | 79      | 01001111 | Space | 32      | 00100000 |

### ABBILDUNG VON BILDERN IM COMPUTER

- Bilder werden im Computer auch binär codiert
- Hierbei wird ein Bild in Pixel eingeteilt (Auflösung)
- Die Farbe in jedem Pixel wird dann als Zahl gespeichert, z.B. True Color RGB (16,777,216 colour variations):
  - Blau 0 ... 256 (= 1 Byte)
  - Grün 0 ... 256 (= 1 Byte)
  - Rot 0 ... 256 (= 1 Byte)
- Die Zahlen werden dann binär codiert, z.B. als 24 Bit (1 Byte = 8 Bit; 3 \* 8 Bit = 24 Bit)



Mahmut Sinecen: Digital Image Processing with MATLAB, 2015


## ACHTUNG: DER UNTERSCHIED IM COMPUTER

Aufgrund der binären Darstellung werden übliche Einheitenvorsätze wie Kilo-, Mega-, etc. auf Basis von 1024 und nicht auf Basis von 1000 definiert

|   | Einheit  | Name<br>Binär | Dezimal<br>(1000er)             | Ausgeschrieben<br>Dezimal | Binär<br>(1024er)                  | Ausgeschriel<br>Binär |
|---|----------|---------------|---------------------------------|---------------------------|------------------------------------|-----------------------|
| ł | Kilobyte | Kibibyte      | $1 \text{ KB} = 10^3 \text{ B}$ | 1.000 B                   | $1 \text{ KiB} = 2^{10} \text{ B}$ | 1.024 B               |
|   | Megabyte | Mebibyte      | $1 MB = 10^6 B$                 | 1.000.000 B               | $1 \text{ MiB} = 2^{20} \text{ B}$ | 1.048.576 B           |
|   | Gigabyte | Gibibyte      | $1 \text{ GB} = 10^9 \text{ B}$ | 1.000.000.000 B           | $1 \text{ GiB} = 2^{30} \text{ B}$ | 1.073.741.82          |
|   | Terabyte | Tebibyte      | $1 TB = 10^{12} B$              | 1.000.000.000.000<br>B    | $1 \text{ TiB} = 2^{40} \text{ B}$ | 1.099.511.62<br>B     |

## DATEN WACHSTUM

- Die Größe der erzeugten Daten wächst zunehmend
- Sie werden in Zukunft vor sehr vielen Daten konfrontiert werden.
- Der Computer muss Ihnen helfen diese Daten zu analysieren durch Informatik



Worldwide IDC Global
DataSphere Forecast, 2022–
2026

## HÖRSAALFRAGE

Wie viele Sensoren hat ein Supermarkt?



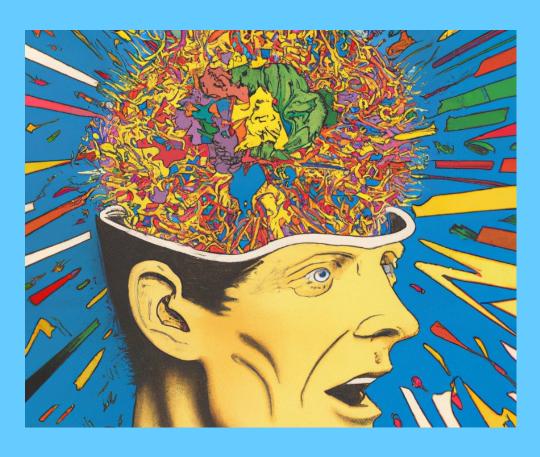
Midjourney: An alien supermarket filled with exotic food

## Beispiel - Tesco Irland

- Die Supermarktkette Tesco hat sehr früh in Sensoren und Monitoringsysteme der Supermärkte mit dem Ziel Energie einzusparen investiert
- Die gesammelten Daten wurden so schnell so groß, dass niemand sie analysieren konnte
- Durch maschinelle Lernmodelle konnte IBM Research die Daten analysieren und half Ihnen 20% des Kühlbedarfs einzusparen



## LESSONS LEARNED


- "Lessons Learned" sind kurze offtopic Themen, von denen ich wünschte irgendjemand hätte mir das als Student gesagt
- Meist in der Mitte der Vorlesung um diese aufzulockern
- Dieses Semester primär Softskill-Themen; Nächstes Semester Survival-Tipps fürs Berufsleben



DALL-E 2: Teddy bears mixing sparkling chemicals as mad scientists, steampunk

# LESSON LEARNED

Welche Gedächtnisarten kennen Sie?



DALL-E 2: 1980s illustration of a face with a visible brain that's exploding

## LESSONS LEARNED - GEDÄCHTNIS

- Wissen braucht Zeit sich zu verfestigen
- Nutzen sie Ihr Unterbewusstsein, d. h. Informationen sammeln und reifen lassen
- Intervalllernen ist, wie im Sport, der effektivste Weg etwas langfristig zu lernen

# fragen?